Contest Problems

High School Coding Contest Saint Anselm College
Saturday, April 7, 2018 @9:00-11:00 AM
I code therefore I am!

General: We do not test for invalid input.

Problem 1. Check Pythagoras

```
Check if 3 given points in 2D space can be the vertices of a right triangle:
(x1,y1), (x2, y2), (x3 , y3). Points are given in the order x1, y1, x2, y2,
x3, y3. The program should ask if you want to continue (more(y/n)?) and
stops if you do not answer "Y".
Example1.
INPUT: Enter points? 0 1 0 0 1 0
    Yes
    more (y/n)? y
    Enter points? 1 1 1 1 2 1
    No
    more (y/n)? n
```

Problem 2. Many Tiles
Find the minimum number of square tiles (w x w, wis an integer) to fill a
given rectangle where its width and height are integer numbers. Find the
number of tiles and their width. The program asks if you want to continue
(more(y/n)?) and stops if you do not answer " y ".
Example 1.
Enter width, height? 3050
1×301 x $20 \quad 2 \times 10$
Means you can cover the 30 x 50 rectangle by:
one tile of size $30 x 30$, one tile of size $20 x 20$ and one tile of size $10 x 10$.
Example 2.
Enter width, height? 24200
$8 \times 243 \times 8$
more (y/n) ? y
Enter width, height? 723
3 x 73 x 2 x 1
more (y/n)? y
Enter width, height? 13125
$9 \mathrm{x} 131 \mathrm{x} 81 \mathrm{x} 5 \quad 1 \mathrm{x} 31 \mathrm{x} 2 \quad 2 \mathrm{x} 1$
more (y/n)? y
Enter width, height? 20
more (y/n)? n

Problem 3. Decrypt the message. Caesar's Cipher

Write a program that given a secret word (only letters, uppercase and no blanks) will help you decipher it. You know that the program uses an encrypted algorithm called Caesar's Cipher, which means the letters of the English alphabet are "pushed" forward with n positions ($\mathrm{n}>0$). That is for $\mathrm{n}=3$, ART will be encrypted as DUW, and ZEN will be encrypted as CHQ. You will write a program for decrypting the text, assuming $3<=n<=6$. As such the program will propose 4 possible decryptions.
Example1. Input: Enter encrypted message? ORYH
Output: LOVE KNUD JMTC ILSB
Example2. Input: Enter message? IXQ
Output: FUN ETM DSL CRK
Example3. Input: Enter message? CHQ
Output: ZEN YDM XCL WBK
Problem 4. Teams for contest
The CS teacher has $\mathrm{N}(3<=\mathrm{N}<=26)$ students. Let's call them a , $\mathrm{b}, \mathrm{c}, . . \mathrm{z}$. The coding contest is coming and the teacher needs to select one group of 3 students. How many possible choices are there? Display them and count them. Example1. INPUT: How many students? 3

OUTPUT: abc Total=1
Example2. How many students? 5
abc abd abe acd ace ade bcd bce
bde cde Total=10
How many students? 6

abc	abd	abe	abf	acd	ace	acf	ade
adf	aef	bcd	bce	bcf	bde	bdf	bef
cde	cdf	cef	def	Total=20			

Problem 5. Reordered Primes
Print all prime numbers that have $k(2=<k<8)$ non-repeating digits with the property that if you switch the first digit with the last they are still prime numbers. For example, 1049 switched will be 9041 . Also display the amount of numbers for each case.
EXAMPLE1.
How many digits (2-7)? 4

1049	1063	1249	1289	1327	1429	1439	1487	1493	1543
1567	1583	1597	1609	1627	1693	1697	1789	1823	1847
1879	1907	3019	3049	3061	3109	3209	3217	3257	3469
3491	3527	3541	3581	3607	3691	3821	3967	7069	7129
7159	7213	7253	7321	7481	7523	7549	7561	7589	7591
7603	7621	7691	7841	7901	7963	9013	9041	9043	9067
9103	9127	9157	9203	9241	9281	9421	9431	9463	9547
9587	9601	9781	9871	$M a n y=74$					

