High School Programming Competition

 Computer Science Department, Saint Anselm CollegeProblem 1
First prime number. Write a program where the user enters a positive integer and the computer prints the first prime number greater than or equal to the user's input. (A prime is a natural number that has exactly 2 distinct natural number divisors: 1 and itself)
Input:
Enter a positive integer? 95
Output:
97

Problem 2
Rotate integers. Write a program that takes n integers and prints them in all possible rotation orders.
Input:
How many integers? 4
Input 4 integers? 5204
Output:
5204
2045
0452
4520

Problem 3

Random students. Write a program where you enter n different student names and then ask the program to generate k random names out of the names you entered. Each time you run the program, the output should come up with a random sequence.
Input:
Ask for $n / / / n=6$
Enter name? Mary
Enter name? Ann
Enter name? Dan
Enter name? Jo
Enter name? Al
Enter name? Ray
Enter size of random group? 3
Output:
Mary Ann Ray (names do not repeat in a group)

```
Run again:
    Ann Dan Al
    Etc.
```

Poker. Check if straight. Enter 5 integers between 1 and 13. The program should check if the numbers could be organized in consecutive order.
Examples:
Input: Enter 5 cards? 46537
Output: Yes. Straight.
Run again:
Input: Enter 5 cards? 461237
Output: No.
Run again:
Input: Enter 5 cards? 8961237
Output: Error input.
Run again:
Input: Enter 5 cards? 111012139
Output: Yes. Straight.

Problem 5

Perfect cubes. Write a program to find all the triplets (a, b, c) where a ,b and c are integers greater than 1 and less than or equal to 100, with the property that the sum of their cubes is a perfect cube.

$$
a^{3}+b^{3}+c^{3}=d^{3}
$$

the program should display all triplets in ascending order without repetitions, that is the triplet (3 4 5) should occur only once (not (5 4 3) or (4 3 5) etc).

```
d a b c
```

Output:

6	$\left(\begin{array}{lll}3 & 4 & 5\end{array}\right)$
12	$\left(\begin{array}{lll}6 & 10\end{array}\right)$
18	$\left(\begin{array}{lll}2 & 12 & 16\end{array}\right)$
99	(11 6688)
100	(16 68 88)
100	(35 70 85)

