High School Programming Competition

Computer Science Department, Saint Anselm College

2009 Problem 1. Circular Permutations

Generate all the circular permutations for a given word (ask for N, N >
1).
Input: Enter word? MARIE
Output: M A R I E
A R I E M
R I E M A
I E M A
I E M A R
E M A R I
2009 Problem 2. The tournament

We have N teams/players. Ask for N. The program should generate all the possible games (where each team plays with each other team just once)

POSSIDIE	yames (where ea	chi ceam	prays	WICII	each	OUTEL	ceam	Just one	=/
Input:	Enter	r N? 5								
Output:	#1	1	2							
	#2	1	3							
	#3	1	4							
	#4	1	5							
	#5	2	3							
	#6	2	4							
	#7	2	5							
	#8	3	4							
	#9	3	5							
	#10	4	5							

2009 Problem 3. Find the 3x3 magic squares

Print all the 3x3 magic squares that contain all of the digits 1-9 (and the sum for each line, column, and diagonal is 15). Input: NO input

Output: 1 2 3 (example only - this square does not satisfy the requirement) 4 5 6

789...

There are ?? magic squares.

2009 Problem 4. The DNA string

Find all the locations of a certain substring and display also how many
are found. Given string is: ACGTACGTACGAGTCGTTTTCCCCCGGGGACGTACGTAC
Input:
 Enter substring? AC
Output:
 0 4 28 32 ..
 Found = 6

2009 Problem 5. Goldbach's Conjecture

Goldbach's Conjecture two <u>primes</u>. Write a program that, given a positive even integer, proposes a pair of two prime numbers that add up to it. (Numbers in pairs could repeat)

Input: Enter number? 14

Output: 14 = 3 + 11 (*also* 14 = 7 + 7 *is acceptable*)