File: Problems08.doc
High School Programming Competition Computer Science Department, Saint Anselm College

Problem1
Circular Permutations. Generate all the circular permutations for a given N (ask for $N, N>1)$. Input:

Enter N? 5
Output:
$\begin{array}{lllll}0 & 1 & 2 & 3\end{array}$
12340
23401
34012
40123

Problem2.
Check magic square. Enter a square of positive integers and check if it is magic. A magic square is a $n * n$ array where the sum of lines and columns are equal. Assume ($n=3$).
Testing examples:
$\{\{7,3,5\},\{6,8,1\},\{2,4,9\}\}$
$\{\{5,9,1\},\{3,4,8\},\{7,2,6\}\}$
$\{\{5,1,9\},\{3,8,4\},\{7,6,2\}\}$
Input:
Line 0? 735
Line 1? 681
Line 2? 249
Output:
YES, magic square (otherwise: NOT a magic square)

Problem3.
Display the first $n=4$ perfect numbers. A perfect number is the sum of its factors. Example: $6=1+2+3$ and $28=1+2+4+7+14$
Output:
6
28
?
?
Problem4
Enter a word (without blanks) and display its letters on each row in increasing number. Last row contains the last letters that remain after you apply this algorithm.
Input:
Enter word? Mathematician
Output:
M
a t
h e m
a t i c
i a n

Problem 5.
Display all the Pythagorean triplets (a,b,c) (a, b, c positive integers, $a>0, b>0, c>0$ with $a^{2}+b^{2}=c^{2}$) where $a<100, b<100$, without repetitions. The program should also have a counter and finally we can see how many they are.

Output:
\#1 $34 \begin{array}{lll} & 3 & 5\end{array}$

